
Agricultura Familiar - Uso e manejo do solo e água na Bacia Hidrográfica do Rio Pardo, RS, Brasil

Eng. Agr. Luis Fernando Marion, ERNS-I Emater - Sinimbu (Imarion@emater.tche.br). Doutorando do Programa em Tecnologia Ambiental da UNISC (PPGTA). Dr. Eduardo Lobo Alcayaga, professor e pesquisador do PPGTA (Orientador).

CONTAMINAÇÃO RECURSOS HÍDRICOS

SAÚDE

FILTRO NATURAL

ASSOREAMENTO

SUSTENTABILIDAD

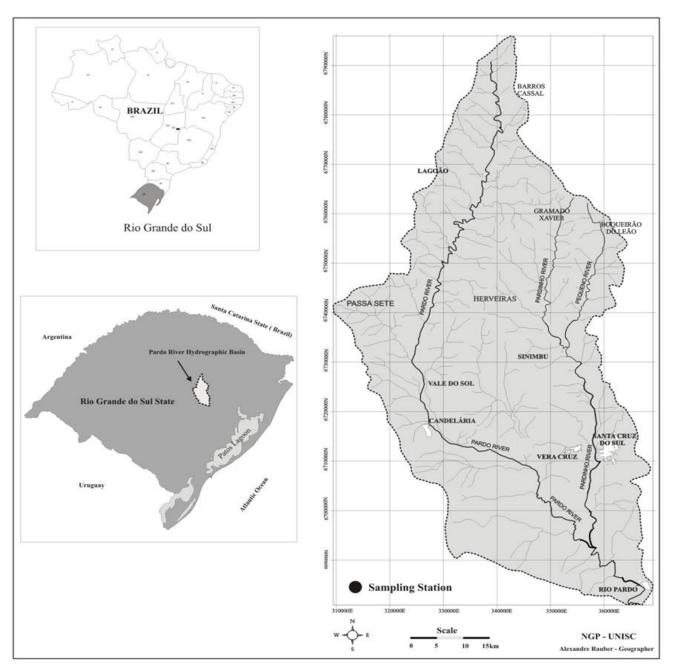
Êxodo Rural

GERAÇÃO DE RENDA

SECAS

ENCHENTES

FIXAÇÃO DAS COMUNIDADES


PRODUÇÃO DE ALIMENTOS

ALAGAMENTOS

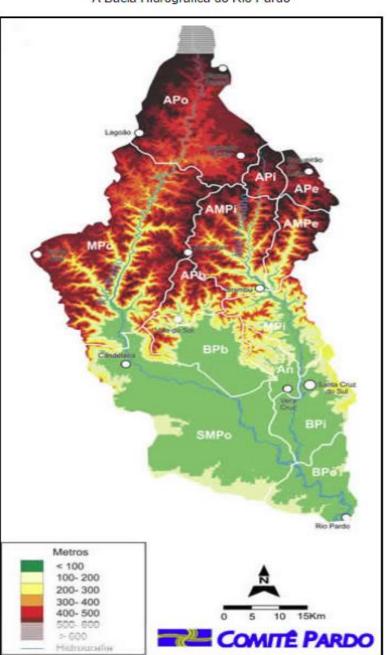
EROSÁ

CONSUMO HUMANO

CARACTERIZAÇÃO DA REGIÃO – Localização Geográfica

A área de drenagem: 3.636,79 Km²,

Municípios

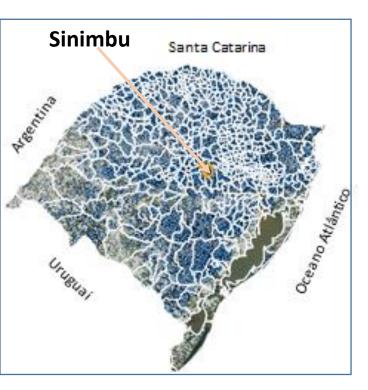

Barros Cassal
Boqueirão do Leão
Candelária
Gramado Xavier
Herveiras
Lagoão
Passa Sete
Rio Pardo
Santa Cruz do Sul
Sinimbu
Vale do Sol
Venâncio Aires
Vera Cruz

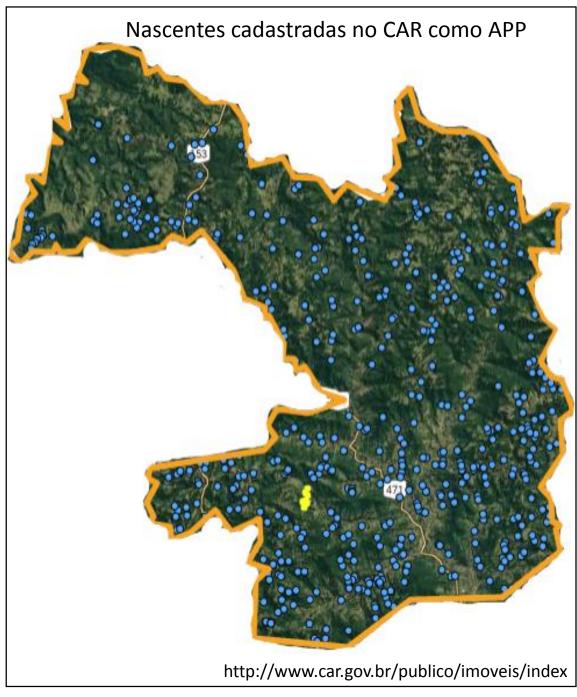
CARACTERIZAÇÃO DA REGIÃO – Unidades de estudo

TABELA 1 - Unidades de Estudo definidas pelo Comitê Pardo.

Unidade de Estudo	Sigla	Área (km²)
Alto Pardo	APo	512,05
Médio Pardo	MPo	773,54
Sub-Médio Pardo	SMPo	728,04
Baixo Pardo	BPo	190,02
Alto Plumbs	APb	110,03
Baixo Plumbs	BPb	236,92
Alto Pardinho	APi	64,60
Alto-Médio Pardinho	AMPi	306,70
Médio Pardinho	MPi	187,63
Baixo Pardinho	BPi	219,46
Alto Pequeno	APe	92,90
Alto-Médio Pequeno	AMPe	134,71
Andreas	An	80 19

A Bacia Hidrográfica do Rio Pardo


A montante - Parte Alta (alt. Sup. 500 metros) 20% da área da bacia


Parte intermediária (alt. variando entre 200 a 500 metros) 40% bacia – altas declividades

A jusante – (depressão central altitude ATÉ 200 metros) 40% da bacia -

Essa divisão é muito importante pois mostra que as atividades agrícolas desenvolvidas na área de abrangência trazem grandes desafios tange ao uso sustentável do solo e água.

CARACTERIZAÇÃO DA REGIÃO – Solos predominantes – Alto e Médio Pardo

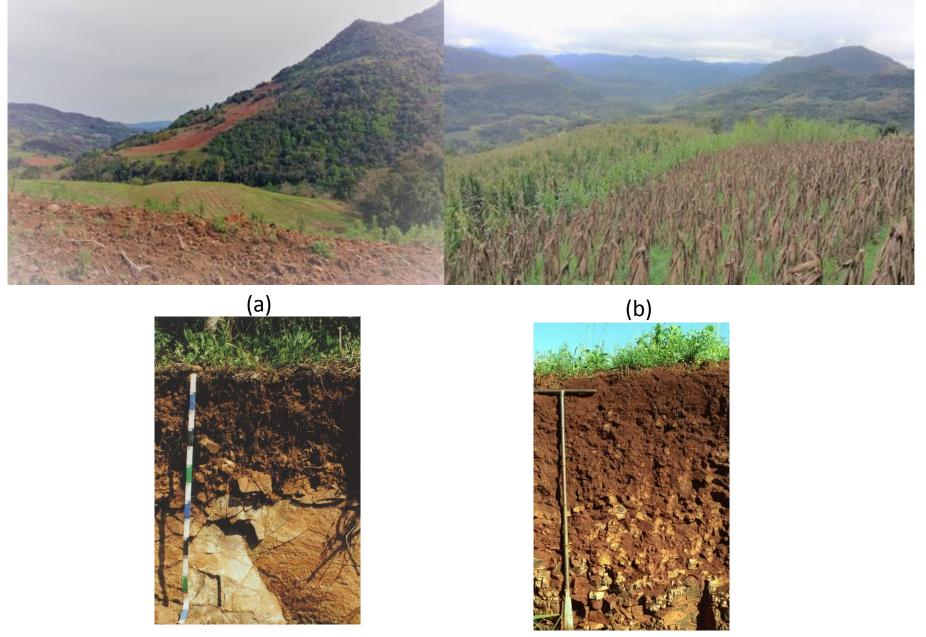


Figura 01- Neossolo Litólico(a); Neossolo Regolítico (b); Fonte: Streck, 2008.

CARACTERIZAÇÃO DA REGIÃO – Solos predominantes – Médio e baixo Pardo

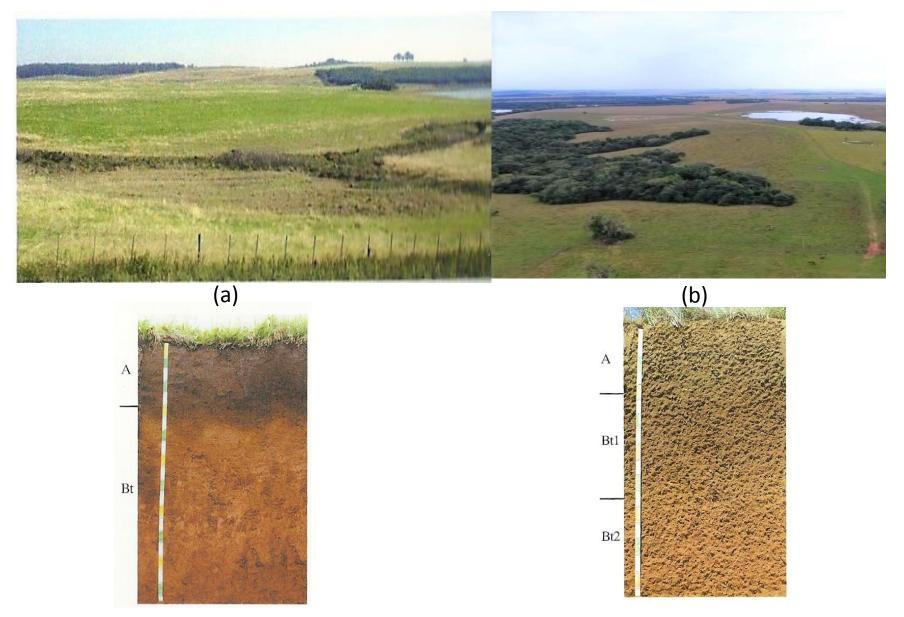


Figura 02- Argissolo Vermelho-Amarelo (unidade Vera Cruz) (a); Argissolo Vermelho-Amarelo (unidade Rio Pardo) (b); Fonte Streck, 2008.

CARACTERIZAÇÃO DA REGIÃO – Estrutura Fundiária

						500-	maior
Município	até 10	10 a 20	20-40	40-80	80-500	1000	1000
Barros Cassal	633	573	356	150	83	6	2
Boqueirão do Leão	383	378	236	72	16	2	0
Candelária	2215	1109	716	227	85	10	3
Gramado Xavier	165	196	156	56	24	2	0
Herveiras	145	141	100	35	12	2	0
Lagoão	425	400	248	103	32	3	0
Passa Sete	521	369	241	82	22	0	0
Rio Pardo	1462	557	352	197	265	40	28
Santa Cruz do Sul	1832	1268	647	75	15	0	0
Sinimbu	605	602	585	168	23	2	0
Vale do Sol	821	664	379	68	5	0	0
Venâncio Aires	4993	1499	432	83	29	1	0
Vera Cruz	1238	490	246	60	11	0	1
Total	15438	8246	4694	1376	622	68	34
	50,65%	27,05%	15,40%	4,51%	2,04%	0,22%	0,11%
		2,38%					

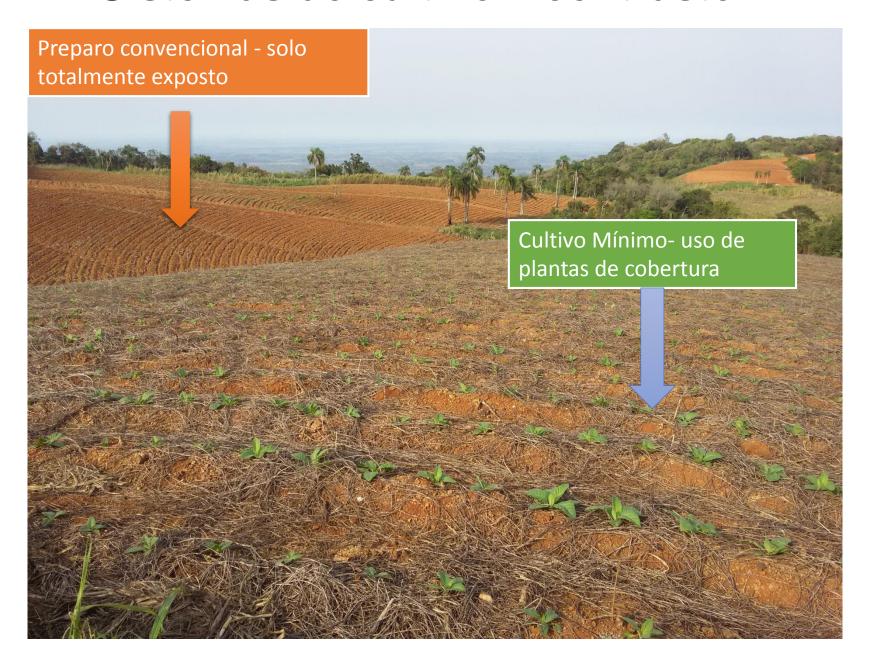
Fonte: http://www.car.gov.br/publico/imoveis/index - Acessado em janeiro 2018

AGRICULTOR FAMILIAR

LEI 11.326, DE 24 DE JULHO DE 2006.

- I não detenha, a qualquer título, área maior do que 4 (quatro) módulos fiscais;
- II utilize predominantemente mão-de-obra da própria família nas atividades econômicas do seu estabelecimento ou empreendimento;
- III renda bruta anual familiar de até R\$ 360 mil nos últimos 12 meses

CARACTERIZAÇÃO DA REGIÃO – Principais culturas


		Batata	Batata			_				Área
Município	Arroz	Doce	Inglesa	Cebola	Feijao	Fumo	Mandioca	Milho	soja	plantada
Barros										
Cassal	0	65	30	20	205	3600	200	2400	8000	14564
Boqueirão										
do Leão	12	104	60	15	255	2850	60	1300	160	4844
Candelária	8850	100	40	20	360	7400	450	7530	17000	42168
Gramado	5	30	20	5	205	2200	42	1500	2200	6221
Herveiras		20	25	6	95	1550	70	1200	60	3040
Lagoão	0	40	15	15	320	2200	140	3000	6000	13152
Passa Sete	0	15	15	7	180	3250	70	2000	2500	8110
Rio Pardo	8160	150	10	10	60	3800	2000	4000	58000	78629
Santa Cruz										
do Sul	1700	160	90	45	280	5690	900	7000	2000	18054
Sinimbu	8	200	100	30	332	3500	400	4200	1400	10307
Vale do Sol	1050	190	90	10	140	6000	400	4500	250	12668
Venâncio	1850	125	180	19	310	8600	2200	14000	3050	30908
Vera Cruz	1000	60	45	20	185	4000	750	4675	600	11459
TOTAL	22635	1259	720	222	2927	54640	7682	57305	101220	254124
% área do estado	2%	10,05%	4%	3%	5%	29%	12%	8%	2%	2,90%

Fonte: IBGE - Produção Agrícola Municipal - PAM (2016)

Sistemas de cultivo -milho pós fumo- plantio direto

Sistemas de cultivo – contraste

ADUBAÇÃO - Aplicação de fertilizantes na superfície

Escorrimento
superficial causado
por chuvas intensas e
contaminação dos
mananciais d'água

FERTILIDADE - Baixa MO e pH

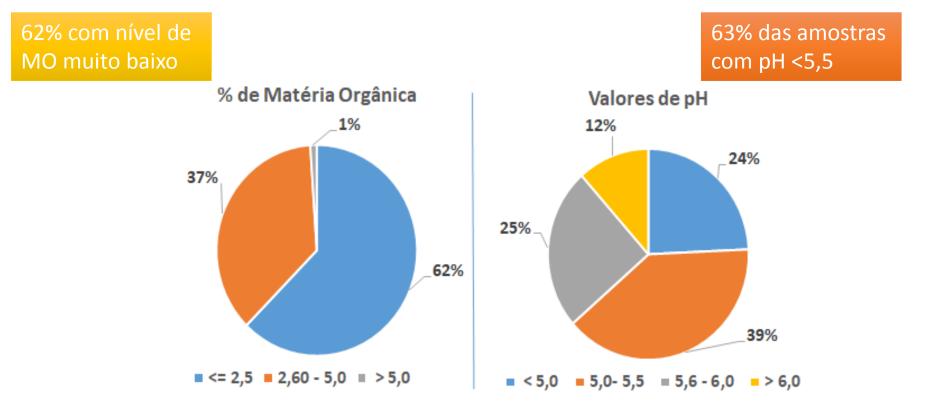
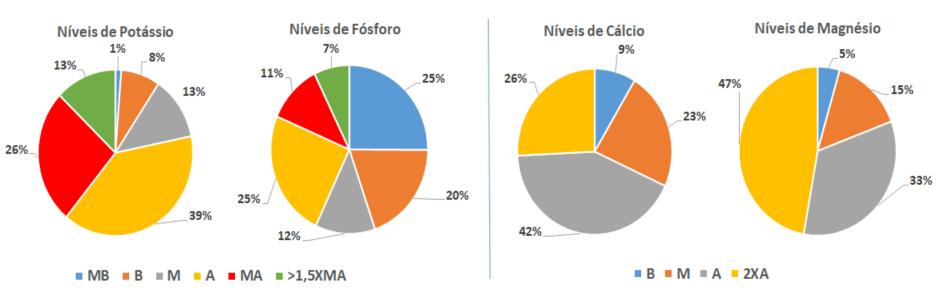
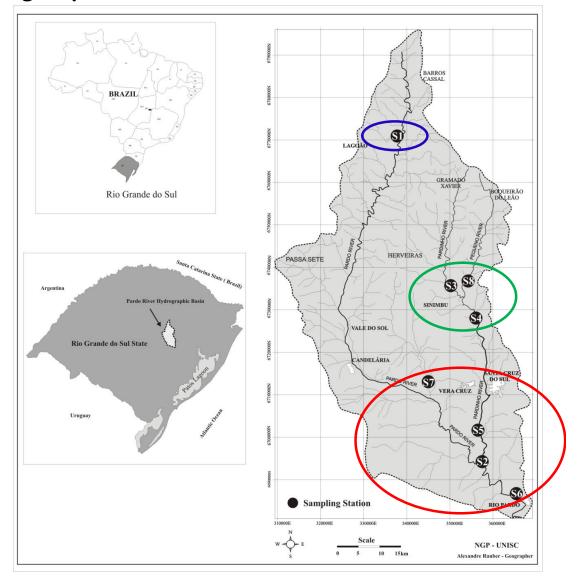
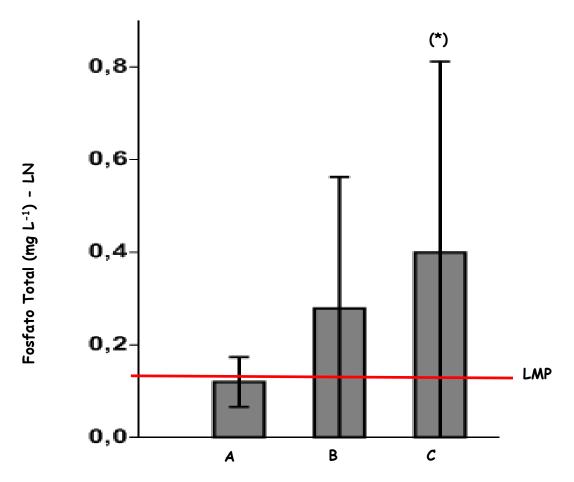


Figura 01: Resultados de 49.222 análises de solos - COREDES Vale do Rio Pardo e Botucaraí realizadas entre 2013 e 2016; (Marion, 2017)

FERTILIDADE – Desequilíbrio de nutrientes

57% das amostras com níveis de fósforo limitante


Figura 02: Resultados de 49.222 análises de solos - COREDES Vale do Rio Pardo e Botucaraí realizadas entre 2013 e 2016; MB=muito baixo; B=baixo; M=médio; A=alto; MA=muito alto; 1,5XMA=uma vez e meia maior que muito alto; 2XA= duas vezes maior que alto; (Marion, 2017)

Contaminação da água por Fosfato

Mapa da área de estudo mostrando a localização da Bacia Hidrográfica do Rio Pardo, RS, no Estado do Rio Grande do Sul, e as oito estações de coleta. Trecho superior (S1), Trecho intermediário (S3, S4, S8), trecho inferior (S2, S5, S6, S7) (Schuch et al., 2015).

CONTAMINAÇÃO DA ÁGUA - Alta concentração de Fosfatos - Eutrofização

Média (± desvio-padrão, n = 12) da concentração de fosfato total [mg L⁻¹ - LN (x+1)], em oito estações de coleta distribuídos ao longo da Bacia Hidrográfica do Rio Pardo, RS, a partir de coletas trimestrais do verão de 2005 até verão de 2009. (A: Ponto de Coleta 1, trecho superior; B: Pontos de Coleta 3, 4 e 8, trecho intermediário; C: Pontos de Coleta 2, 5, 6 e 7, trecho inferior). LMP: Limite Máximo Permitido pela Resolução CONAMA 357/2005 para classes de uso 4 - 0,15 mg L⁻¹ (classe de pior qualidade). (*): Diferença significativa com os pontos de coletas A e B.

A: $0.12 \pm 0.05 \text{ mg L}^{-1}$ (CV = 45.0%); B: $0.28 \pm 0.08 \text{ mg L}^{-1}$ (CV = 102.0%); C: $0.40 \pm 0.41 \text{ mg L}^{-1}$ (CV = 103.5%).

CONTAMINAÇÃO DO SOLO – Agrotóxicos

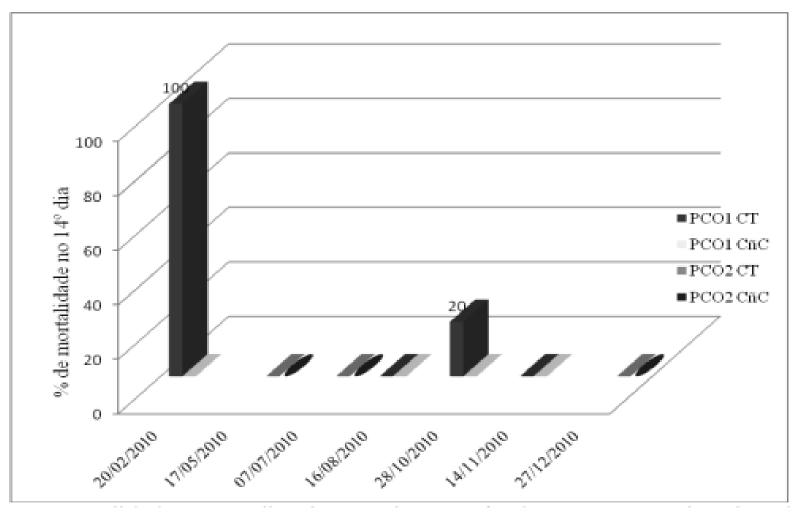


Figura 4. Mortalidade aos 14 dias do organismo E. fetida em amostras de solo coletadas em propriedades olerícolas de Santa Cruz do Sul, RS. Fonte: Marion et al, 2011.

CONTAMINAÇÃO DO SOLO – Agrotóxicos

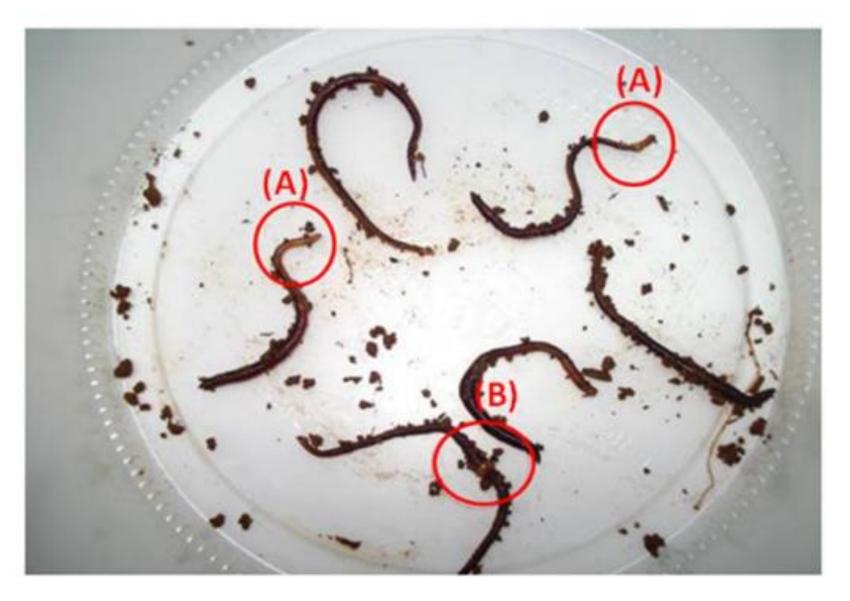


Figura 5. Deformidades observadas nos indivíduos sobreviventes ao teste de toxicidade realizado na amostra CT de 28/10/2010. (A) afilamentos nas extremidades; (B) deformação no clitelo. Fonte: Marion et al. 2011.

CONTAMINAÇÃO DO SOLO – Agrotóxicos

Quadro 3.29 - Resultados das análises de qualidade para os agroquímicos investigados

		Estações amostrais						
	Princípio Ativo	Po 2	Po 4*	Pi 5				
PR	Flumetralina, µg L ⁻¹	< 0,05	0,23	0,12				
٦	Clorpirifós, µg L ⁻¹	< 0,05	< 0,05	< 0,05				
	Ciflutrina, µg L ⁻¹	< 0,05	< 0,05	< 0,05				
	Acefato, μg L ⁻¹	< 0,1	< 0,1	< 0,1				
⅃	Metalaxil-M, μg L ⁻¹	< 0,07	< 0,07	< 0,07				
¢F	lmidacloprido, μg L ⁻¹	0,11	< 0,05	0,22				
٦	Atrazina, µg L ⁻¹	< 0,1	< 0,1	< 0,1				
	Simazina, µg L-1	< 0,1	< 0,1	< 0,1				
GIV	Clomazona, µg L ⁻¹	0,26	0,23	0,18				
\Box	Quincloraque, µg L ¹	< 0,2	< 0,2	< 0,2				
	Metsulfurom-metílico, µg L ⁻¹	< 0,2	< 0,2	< 0,2				
	Pirazossulfurom-etílico, µg L ⁻¹	< 0,2	< 0,2	< 0,2				
	2,4-D, μg L ⁻¹	< 0,1	< 0,1	0,21				
П	Propanil, µg L ⁻¹	< 0,1	< 0,1	< 0,1				

Nota: (1) dentre estes princípios ativos, apenas os sublinhados (Atrazina, Simazina e 2,4-D) apresentam limites estabelecidos pela Resolução CONAMA 357/05. Entretanto, as concentrações detectadas estão bastante abaixo dos limites máximos para Classe 1 da Resolução. Já os resultados destacados com negrito, mostram os princípios ativos de agroquímicos que apresentaram valores superiores aos limites de detecção dos métodos. Ainda que a maioria destes não conste na citada legislação, é importante considerar que o simples fato de terem sido detectados já é um alerta, tendo em conta que, em outras bacias do Estado onde tal tipo de análise foi realizada, estas substâncias não foram sequer detectadas. Fonte: ECOPLAN, 2005.

Ações e projetos

Criado em 1991 te como objetivo desenvolver a educação socioambiental, visando a preservação do ambiente, educação no meio rural, sustentabilidade, diversificação e a valorização dos agricultores.

Instalado em 1999, é um órgão deliberativo com força legal, apoiado nas leis 9.433/97 do Governo Federal e pela Legislação Estadual de Recursos Hídricos, lei nº 10.350/94, responsável pela gestão das águas nas Bacias Hidrográficas.

Através do departamento de Limnologia conduz estudos a mais de 20 anos de monitoramentos físicos, químicos e biológicos através de análises laboratoriais e uso de bioindicadores de qualidade da água. Atua também na área de ecotoxicologia terrestre e aquática e desenvolve tecnologias de prevenção e remediação da poluição.

Pagamento por Serviços Ambientais (PSA) no Município de Vera Cruz, RS.

Programa de uso sustentável do solo e água Berço das Águas

Objetivo: Preservar e melhorar a qualidade dos recursos naturais solo e água utilizados nas propriedades familiares rurais, aumentando a produtividade, a satisfação das famílias produtoras rurais e trazendo maior sustentabilidade para a comunidade regional.

Um programa de apoio técnico e financeiro e operacional para os produtores rurais que comprovarem a utilização de práticas de conservação do solo e das nascentes.

1º FÓRUM REGIONAL DE SOLO E ÁGUA SINIMBU - RS

A proposta deste evento nasce com intuito de debater o uso conservacionista do Solo e da Água em âmbito regional, e buscar ações propositivas, estratégicas e sinérgicas que atendam as demandas e os desafios futuros do uso do solo e água na Agricultura Familiar do Vale do Rio Pardo.

O evento será realizado no dia 13/11/2017 com início às 8h30min durante 15° Feira Industrial, Comercial e Agropecuária de Sinimbu – EXPOSIN - na Câmara Municipal de Vereadores (junto ao Centro Administrativo Municipal) com a seguinte programação:

8h30 - Recepção

9h00 - Abertura - Sandra Backes (Prefeita Municipal)

9h15 - Ernani Polo (Secretário Estadual da Agricultura Pecuária e Irrigação);

9h30 – Claus Wagner e Cesar Zitzke (Secretaria Agricultura de Sinimbu) - Programa Municipal de Uso Sustentável de Solo e Água- Sinimbu;

9h:45 – Edemar Streck (ATE Emater) - Programa Estadual de Conservação do solo – "Os novos desafios";

10h00 – Valéria Borges Vaz (Presidente do Comitê Pardo) - Recursos Hidricos no Vale do Rio Pardo;

10h15 – Décio Dutra (Sinditabaco) – Práticas Conservacionistas no cultivo do tabaco;

10h30 – Marco Antônio Dornelles (Vice-presidente AFUBRA) – Agricultura Familiar Sustentável e os desafios interinstitucionais.

10h45 - Intervalo

11h00 - Perguntas e debates com os palestrantes

11h45 – Considerações finais e encaminhamentos

SECRETARIA DE AGRICULTURA, INDÚSTRIA,

COMÉRCIO E MEIO AMBIENTE

12h00 - Encerramento

Ao meio dia será servido o Almoço da Agricultura Familiar na EXPOSIN, valor de R\$ 17,00. Pedimos a confirmação para o almoço até dia 10/11/2017.

Informações:

Cesar Roberto Zitzke agricultura@sinimbu.rs.gov.br Fone: 51-3708-1313

Realização:

Luis Fernando Marion

Fone: 51-3708-1309

lmarion@emater.tche.br

Oficina:

 Segurança e legislação para o uso e armazenamento de agroquímicos (Seapi/RS)

Objetivos:

Manejo integrado de pragas e doenças - MIP.

Uso racional de agroquímicos, principalmente inseticidas e fungicidas;

Aumento da produtividade através do adequado manejo de solo e água;

Tecnologia e segurança na aplicação de produtos fitossanitários.

Diminuir o impacto ambiental

Realizado no estado todo o acompanhamento de 52 Unidades de Referência Técnica – URTs.

Obrigado pela Atenção!

Luis Fernando Marion Imarion@emater.tche.br